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These notes follow Emamanuel Breuillard and Peter P.Varju’s paper titled
”Entropy of Bernoulli Convolutions and Uniform Exponential Growth for
Linear Groups” 1.

1. Introduction and Statement of Theorems

A Bernoulli convolution with parameter λ P p0, 1q is the distribution µλ of
the following random power series

°8
k�0�λ

k where the signs � are chosen inde-
pendently with equal probability. The distribution of finite sum

°
0¤k¤n�1�λ

k

will be denoted by µ
pnq
λ . The random walk entropy hλ of µλ is defined to be:

hλ :� lim
nÑ8

Hpµ
pnq
λ q

n

where Hpµ
pnq
λ q is the Shannon entropy of the finitely supported measure µ

pnq
λ .

Let πλpxq � ar � Πi�r
i�0px � λiq � arx

r � ar�1x
r�1 � ... � a0 be the minimal

polynomial in Zrxs of an algebraic number λ P Q, with λ1, ..., λr its Galois
conjugates (including λ1 � λ).

Definition 1.1. The Mahler measure of λ is define to be Mλ :� |ar| �Π|λi¡1|λi|.

This value is used as a height function for measuring the ”complexity” of
algebraic numbers and polynomials of integer coefficients (there are clearly
only finitely many such numbers/poly. with bounded Mahler measure and
bounded degree).

The main result we would like to discuss today is the following, connecting
Mahler measure with the entropy of a Bernoulli convolution with parameter λ:

Theorem 1.1. There exists a positive constant c ¡ 0 such that given any
algebraic number λ:

c � min p1, log λq ¤ hλ ¤ min p1, log λq .

This constant can be taken to be c � 0.44. log here and throughout will be
taken to be in base 2.

A special case of Hochman’s theorem on Bernoulli convolutions connects the
random walk entropy hλ with algebraic parameter λ P p1

2
, 1q to the Hausdorff

1Preprint arXiv:1510.04043v2 [math.CA] 1 Jun 2016
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dimension of the measure µλ:

dimµλ � min

�
1,

hλ
log λ�1




Hence theorem 1.1 provides an easily testable condition implying dimµλ
has full dimension.

Corollary 1.2. If λ is a real algebraic number such that:

minpMλ, 2q
�0.44 ¤ λ ¤ 1

then dimµλ � 1.

It is a famous conjecture by Lehmer that the Mahler measure of all algebraic
numbers is uniformly bounded away from 1 whenever λ is not 0 or a root
of unity (it is a result of Kronecker showing these are the only cases when
Mλ � 1).

Corollary 1.3. If the Lehmer conjecture holds, then there exists an ε ¡ 0
such that for every real algebraic 1� ε   λ   1 the dimension of the Bernoulli
convolution dimµλ � 1.

proof of Corollary. If the Lehmer conjecture is true then there exists a δ ¡ 0 for
which logMλ ¡ δ for all λ P p1

2
, 1q. Hence for all λ large enough log λ�1 ¤ c � δ,

where c is the uniform constant appearing in the statement of theorem 1.1.
Therefore:

dimµλ � min

�
1,

hλ
logλ�1



¥ min

�
1,
c � min p1, logMλq

c � δ



� 1

�

In a following paper by Breuillard and Varju showed:

Theorem. The following inclusion holds:

"
λ P

�
1

2
, 1



: dimµλ   1

*
�

"
λ P QX

�
1

2
, 1



: dimµλ   1

*

where Q is the set of algebraic numbers and t�u denotes the topological closure
in R.

From this theorem the assumption of algebraicity in the above corollary can
be removed, giving:

Corollary 1.4. If the Lehmer conjecture holds then there exists an ε ¡ 0 for
which all 1 � ε   λ   1 admit dimµλ � 1.

We will focus in these notes in the proof of Theorem 1.1 and we begin with
the (easier) proof of the upper bound.
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2. Proof of the upper bound in theorem 1.1

As a consequence of Jensen’s inequality we know Hpµ
pnq
λ q ¤ log |supp µ

pnq
λ |.

Hence hλ is bounded above by the rate of exponential growth of the n-th sums:

ρλ � lim
nÑ8

log |supp µ
pnq
λ |

n
.

The limit exists by subadditivity. Note that supp µλ �
!°k�n�1

k�0 �λk
)

and

has cardinality 2n whenever λ is not a root of a polynomial with coefficients

in {-1,0,1} and actually Hpµ
pnq
λ q � n in that case. Therefore Hochman’s

result directly implies that dimµλ � 1 whenever λ is algebraic and not a root
of a polynomial with coefficients in {-1,0,1}. Hence our proof will focus on
bounding ρλ in the case where λ is a root of such a polynomial.

Claim. A root λ of a polynomial with coefficients in {-1,0,1} is an algebraic
unit, i.e. both λ and λ�1 are algebraic integers (roots of monic polynomials of
integer coefficients).

Proof. Let p be a polynomial with coefficients in {-1,0,1} and let λ be some
root of p. p can be factorized in Zrxs into irreducible components. Since
all components have integer coefficients and p’s leading coeffieint is �1 we
deduce λ is an algebraic integer (root of a monic irreducible polynomial with
integer coefficients). The same reasoning shows λ’s minimal polynomial has
constant coefficient �1 meaning λ � λ2 � � �λr � �1 and hence λ�1 � �λ2 � � �λr
is a product of algebraic integers and thus itself an algebraic integer. �

A useful property of algebraic units is the fact that:

Π|λi| 1|λi| �
1

Mλ

as ar � 1 and the product of all Galois conjugates equals �1.
We will prove the following lemma which implies the upper bound in the

theorem:

Lemma 2.1. Let λ be an algebraic unit and denote by s the number of Galois

conjugates of λ on the unit circle. Then |supp µ
p`q
λ | ¤ C`sM `

λ, where C is a
constant depending only on λ. In particular:

ρλ ¤ min p1, logMλq .

Proof. Denote by σ1, ..., σn : Qpλq Ñ R the real Galois embeddings for which
|σipλq| ¡ 1, by τ1, ..., τm : Qpλq Ñ C the complex Galois embeddings with
|τjpλq| ¥ 1 (taking only one of each complex conjugate pair of embeddings),
and denote by ρ1, ..., ρo : Qpλq Ñ C the complex Galois embedding for which
|ρkpλq|   1 (here taking both from a pair of complex conjugate embeddings).

Consider the set A � supp µ
p`q
λ �

!°`�1
k�0�λ

k
)

and note that its elements are

algebraic integers (as OQ is a ring), hence for any two distinct x, y P A we
have:

Πi,j,k|σipx� yq||τjpx� yq|2|ρkpx� yq| ¥ 1
3



as the product inside | � | is both an algebraic integer and a rational (as it is
fixed by the Galois group associated with λ over Q). For any 1 ¤ k ¤ o we
have

|ρkpx� yq| ¤ |ρkpxq| � |ρkpyq| ¤ 2
`�1̧

i�0

|ρkpλq|
i ¤

2

1 � |ρkpλq|

Hence there is a constant c0 dependent on λ for which:

Πi,j,k|σipx� yq||τjpx� yq|2 ¥ c0.

Define the map S : Qpλq Ñ Rn�2m by:

Spxq � pσ1pxq, ..., σnpxq,Repτ1pxqq, Impτ1pxqq, ...,Repτmpxqq, Impτmpxqqq

By the inequality above we deduce there exists a constant c1 depending on
λ for which any two distinct x, y P A admit }Spx � yq} ¡ c1. Consider the
following set:

Ω � tpx1, ..., xn�2mq P Rn�2m :

|xi| ¤
|σipλq|

` � 1

|σipλq| � 1
� c1, and

|xn�2j�1|, |x2j| ¤
|τjpλq|

` � 1

|τjpλq| � 1
� c1 if |τjpλq| ¡ 1, and

|xn�2j�1|, |x2j| ¤ l � c1 if |τjpλq| � 1u.

It can be easily seen that the balls of radius 1
2
c1 around the points of SpAq

are disjoint and contained inside Ω. On the other hand the volume of Ω is
bounded by C`sM `

λ giving the required bound on |A|. �

3. Differential and Gaussian averaged entropy

Denote F pxq � �x log x, recall F is concave and admits F pxyq � xF pyq �
F pxqy. Let X be a random variable in Rd with absolutely continuous distri-
bution with respect to Lebesgue measure and with density f . We define the
differential entropy of X to be:

HpXq :�

»
F pfpxqqdx � �

»
fpxq log fpxqdx.2

This is well defined whenever f log f P L1pRdq.
Two useful properties of differential entropy:

 Given a linear map A P GLdpRq and a RV X with finite differential
entropy, the change of variables formula yields HpAXq � HpXq �
log | detA|. In particular we see that the differential entropy may
receive negative values.

 Given a continuous RV Y (with density f)and a discrete RV X both
with finite entropy (differential and Shannon respectively), then: HpX�
Y q ¤ HpXq �HpY q.

2We use the same notation for Shannon and differential entropy.
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Proof. The density of X � Y is Erfpy �Xqs �
°
i pifpy � xiq, hence:

HpX � Y q �

»
F p
¸
i

pifpy � xiqqdy

¤

» ¸
i

F ppifpy � xiqqdy

�

» ¸
i

F ppiqfpy � xiqdy �

» ¸
i

piF pfpy � xiqqdy

�
¸
i

F ppiq �

»
F pfpyqqdy � HpXq �HpY q

where the inequality id due to the subadditivity of F . �

We denote by GA the centered Gaussian random variable in Rd with co-
variance matrix AAt P GLdpRq and density:

gApxq �
1

p2πq
d
2 | detA|

� e�
1
2
}A�1x}2

Its differential entropy is HpGAq �
d
2

log 2eπ � log | detA| (which is the
maximal entropy of all distributions with co-varianca matrix AAt).

Given a bounded random variable in Rd and a matrix B P GLdpRq we define
the following quantity:

HpX;Bq :� HpX �GBq �HpGBq

where GB is a centered Gaussian RV with co-variance matrix BBt independent
of X. This may be thought of as the Gaussian-averaged entropy of X at scale
B. Informally this quantity measure the how much information is needed to
describe the law of X up to scale Bp∆q (∆ being the unit ball in Rd). We also
define HpX;B1|B2q :� HpX;B1q �HpX;B2q.

Define the following partial order on GLdpRq by B1 ¨ B2 whenever B2B
t
2 �

B1B
t
1 is a non-negative semi-definite matrix (or equivalently whenever @x P

Rd }Bt
1x}2 ¤ }Bt

2x}2). Some basic properties of this quantity:

Lemma 3.1. Let B1, B2 P GLdpRq with B1 ¨ B2. Assume that X, Y are two
bounded independent random variables taking values in Rd. Then:

(1) HpX;B1q ¥ 0,
(2) HpX;B1q �HpY ;B1q ¥ HpX � Y ;B1q,
(3) HpX;B1q ¥ HpX;B2q,
(4) HpX � Y ;B1|B2q ¥ HpX;B1|B2q.

These properties are a direct consequence of the following:

Theorem 3.2 (Madiman’s Submodularity Inequality). Assume X, Y, Z are
three independent Rd-valued random variables such that the distributions of
Y, X�Y, Y �Z, X�Y �Z are absolutely continuous with respect to Lebesgue
measure and have finite differential entropy. Then:

HpX � Y � Zq �HpY q ¤ HpX � Y q �HpY � Zq
5



proof of lemma. Item (1) follows from the concavity of F :

HpX �GB1q �

»
F pErgB1px�Xqsqdx ¥

»
ErF pgB1px�Xqqsdx � HpGB1q.

Item (2) follows from the submodularity inequality applied to the three inde-
pendent RVs X 1 � X, Y 1 � GB1 , Z

1 � Y :

HpX �GB1 � Y q �HpGB1q ¤ HpX �GB1q �HpY �GB1q

subtracting 2HpGB1q from both sides gives the required inequality. For item
(3), notice that B1 ¨ B2 implies there exists an M P GLdpRq such that
B2B

t
2 � B1B

t
1 �MM t. In particular if GB1 and GM are the respective and

independent RVs then GB2 � GB1 �GM . Hence by submodularity:

HpX �GB2q �HpGB1q � HpX �GB1 �GMq �HpGB1q

¤ HpX �GB1q �HpGB1 �GMq

� HpX �GB1q �HpGB2q

ðñ HpX;B2q ¤ HpX;B1q.

Item (4) is implied by taking X 1 � Y, Y 1 � X �GB1 , Z
1 � GM :

HpX � Y �GB2q �HpX �GB1q � HpY �X �GB1 �GMq �HpGB1q

¤ HpX � Y �GB1q �HpX �GB1 �GMq

� HpX � Y �GB1q �HpX �GB2q

ðñ HpX � Y ;B1|B2q ¥ HpX;B1|B2q.

�

4. Proof of the lower bound in theorem 1.1

Before we begin with proof, a few words and notations on a special case
of a random walk in GLdpRq - ”Bernoulli convolutions for matrices”. Given
a matrix A P GLdpRq with spectral radius strictly less than 1, define the
random sum XA �

°8
n�0�A

n where the signs are chosen independently with
equal probability. Notice that the sum almost always absolutely converges
(by Gelfand ρpAq � limnÑ8 }A

n}
1
n ). We denote the finite random sum of `

elements to be X
p`q
A �

°`�1
n�0. Let µA be the distribution of XA and µ

p`q
A be

the distribution of X
p`q
A . Given a vector x P Rd we denote the projection

XA,x � XAx and X
p`q
A,x � X

p`q
A x and their corresponding projected distributions

µA,x, µ
p`q
A,x. Notice that these measures enjoy a self-similarity property:

µA � µ
p`q
A � A`µA

where A`µA is the push-forward of µA by the linear map A` P GLdpRq. Similarly,

µA,x � µ
p`q
A,x � A

`µA,x.

proof of the lower bound in theorem 1.1. Given λ P p1
2
, 1q an algebraic unit,

denote by λ1, ...λd the Galois conjugates of λ with modulus  1. Take A P
GLdpRq to be a real-valued matrix whose eigenvalues coincide with tλ1, ..., λdu
(such a matrix always exists as the complex λi’s come in complex conjugate
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pairs). Notice that, by design, the spectral radius of A is strictly less than 1.
Assume in addition that the operator norm of A is strictly less than 1 (w.r.t
the Euclidean norm on Rd).

The first simple but important observation is that the random walk of
°
�λn

on R may be ”lifted” to
°
�An on GLdpRq in the following sense: If for some

a1, ..., am, b1, ..., bk P Q λ admits the following identity
°m
i�1 aiλ

i �
°m
j�1 bjλ

j,

then so does A, meaning
°m
i�1 aiA

ix �
°m
j�1 bjA

jx for any x P Rd (readily

seen by expressing x via a basis of eigenvectors). Clearly the implication in
the other direction holds as well. Hence:

Hpµ
p`q
λ q � Hpµ

p`q
A q ¥ Hpµ

p`q
A,xq

As a consequence we have:

hλ � lim
`Ñ8

1

`
Hpµ

p`q
λ q ¥ lim

`Ñ8

1

`
Hpµ

p`q
A,xq

for any x P Rd. We shall now bound Hpµ
p`q
A,xq from below.

First we shall show that Hpµ
p`q
A,xq ¥ HpµA,x;A

`|Idq which might be expected

as both roughly measure the information of µA,x at scale A`p∆q:

HpµA,x;A
`|Idq � HpµA,x;A

`q �HpµA,x; Idq

� Hpµ
p`q
A,x � A

`µA,x;A
`q �HpµA,x; Idq

¤ Hpµ
p`q
A,x;A

`q �HpA`µA,x;A
`q �HpµA,x; Idq

� Hpµ
p`q
A,x;A

`q ¤ Hpµ
p`q
A,xq

where the first inequality follows from property (2) of the lemma and the
second inequality follows from the fact that A`GId � GA` and the change of
variables formula for the differential entropy. In addition we have by definition:

HpµA,x;A
`|Idq �

`̧

i�1

HpµA,x;A
i|Ai�1q

Our assumption that }A}op   1 implies Ai ¨ Ai�1 for all i. Hence by property
(4) of the lemma we may deduce:

HpµA,x;A
i|Ai�1q � Hpµ

pi�1q
A,x � Ai�1µA,x;A

i|Ai�1q

¥ HpAi�1µA,x;A
i|Ai�1q � HpµA,x;A|Idq

In conclusion we recieve:

hλ � lim
`Ñ8

1

`
Hpµ

p`q
A q ¥ lim

`Ñ8

1

`
Hpµ

p`q
A,xq

¥ lim
`Ñ8

1

`
HpµA;A`|Idq ¥ HpµA,x;A|Idq

Using property (4) of the lemma again (for A ¨ Id) gives:

HpµA,x;A|Idq � Hpµ
p1q
A,x � AµA,x;A|Idq ¥ Hpµ

p1q
A,x;A|Idq � Hp�x;A|Idq

A result from linear algebra shows there exist two orthogonal matrices
u, v P OdpRq such that D � uAv where D � diagp1, 1, ...,Πλiq. Note that
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Πλi �
1
Mλ

. Exploiting the rotational symmetry of the normalized Gaussian
distribution we conclude:

Hp�x;A|Idq � Hp�ux;D|Idq

Taking x � ted � p0, 0, ..., 0, tq one receives:

Hp�x;D|Idq � Hp�ted �DGIdq �HpDGIdq � pHp�ted �GIdq �HpGIdqq

� Hp�tD�1ed �GIdq �HpGIdq � pHp�ted �GIdq �HpGIdqq

� Hp�tMλed �GIdq �Hp�ted �GIdq

� Hp�tMλ �Gq �Hp�t�Gq

where G is the standard one-dimensional Gaussian distribution. The second
equality comes from the change of variables formula and the last one from
F pxyq � xF pyq � yF pxq which allows to integrate-out all the first d � 1
coordinates. An additional calculation shows there exists a uniform constant
c ¡ 0 with Hp�tMλ �Gq �Hp�t�Gq ¥ cminp1, logMλq as required. �
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